The quantile process under random censoring
نویسندگان
چکیده
In this paper we discuss the asymptotical properties of quantile processes under random censoring. In contrast to most work in this area we prove weak convergence of an appropriately standardized quantile process under the assumption that the quantile regression model is only linear in the region, where the process is investigated. Additionally, we also discuss properties of the quantile process in sparse regression models including quantile processes obtained from the Lasso and adaptive Lasso. The results are derived by a combination of modern empirical process theory, classical martingale methods and a recent result of Kato (2009).
منابع مشابه
Nonparametric Test for Checking Lack-of-Fit of Quantile Regression Model under Random Censoring
Recently, considerable attention has been devoted to quantile regression under random censoring in both statistical and econometrical literature yet little has been done on the important problem of model checking. This paper proposes a nonparametric test for checking the lack-of-fit of the quantile function of the survival time given the covariates when the survival time is subjected to random ...
متن کاملAn Integrated Maximum Score Estimator for a Generalized Censored Quantile Regression Model
Quantile regression techniques have been widely used in empirical economics. In this paper, we consider the estimation of a generalized quantile regression model when data are subject to fixed or random censoring. Through a discretization technique, we transform the censored regression model into a sequence of binary choice models and further propose an integrated smoothed maximum score estimat...
متن کاملComposite Quantile Regression for Nonparametric Model with Random Censored Data
The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. The asymptotic normality of the proposed estimator is established. The proposed methods are applied to the lung cancer data. Extensive simulations are reported, showing that the pro...
متن کاملNonparametric quantile estimation under progressive censoring
This work deals with asymptotic properties of the [αm]-th order statistic of a type-II progressively censored sample of size m. Such an order statistic, indexed by α ∈ [0, 1], is called the quantile process. Our main results concern the normalized version of the quantile process for which invariance principles are obtained. These results are applied in order to construct non-parametric estimato...
متن کاملCensored Quantile Regression with Varying Coefficients
We propose a varying-coefficient quantile regression model for survival data subject to random censoring. Motivated by the work of Yang (1999), quantilebased moments are constructed using covariate-weighted empirical cumulative hazard functions. We estimate regression parameters based on the generalized method of moments. The proposed estimators are shown to be consistent and asymptotically nor...
متن کامل